# New Hampshire Volunteer Lake Assessment Program

## 2002 Bi-Annual Report for Beaver Lake Derry



NHDES Water Division Watershed Management Bureau 6 Hazen Drive Concord, NH 03301



# Observations & Recommendations

After reviewing data collected from **BEAVER LAKE**, the program coordinators recommend the following actions.

#### FIGURE INTERPRETATION

Figure 1 and Table 1: The graphs in Figure 1 (Appendix A) show the historical and current year chlorophyll-a concentration in the water column. Table 1 (Appendix B) lists the maximum, minimum, and mean concentration for each sampling season that the lake/pond has been monitored through the program.

Chlorophyll-a, a pigment naturally found in plants, is an indicator of the algal abundance. Because algae are usually microscopic plants that contain chlorophyll-a and are naturally found in lake ecosystems, the chlorophyll-a concentration found in the water gives an estimation of the concentration of algae or lake productivity. The mean (average) summer chlorophyll-a concentration for New Hamsphire's lakes and ponds is 7.02 ug/L.

Similar to the summer of 2001, the summer of 2002 was filled with many warm and sunny days and there was a lower than normal amount of rainfall during the latter-half of the summer. The combination of these factors resulted in relatively warm surface waters throughout the state. The lack of fresh water to the lakes/ponds reduced the rate of flushing which may have resulted in water stagnation. Due to these conditions, many lakes and ponds experienced increased algae growth, including filamentous green algae (the billowy clouds of green algae typically seen floating near shore), and some lakes/ponds experienced nuisance cyanobacteria (blue-green algae) blooms.

The current year data (the top graph) show that the chlorophyll-a concentration **remained stable** from May to July, and then **increased** from July to August. The chlorophyll-a concentration in May, June, and July was approximately equal to the state mean and in August was **slightly greater than** the state mean.

The historical data (the bottom graph) show that the 2002 chlorophyll-a mean is *slightly less than* state mean.

Overall, the statistical analysis of the historical data (the bottom graph) shows that the mean annual chlorophyll-a concentration has *fluctuated*, but has *not significantly changed* (either *continuously increased* or *continuously decreased*) since monitoring began in **1993**. (Note: Please refer to Appendix E for the detailed statistical analysis explanation and data print out.)

While algae is naturally present in all lakes/ponds, an excessive or increasing amount of any type is not welcomed. In freshwater lakes/ponds, phosphorus is the nutrient that algae depend upon for growth. Therefore, algal concentrations may increase when there is an increase in nonpoint sources of nutrient loading from the watershed, or in-lake sources of phosphorus loading (such as phosphorus releases from the sediments). It is important to continually educate residents about how activities within the watershed can affect phosphorus loading and lake quality.

Figure 2 and Table 3: The graphs in Figure 2 (Appendix A) show historical and current year data for lake/pond transparency. Table 8 lists the maximum, minimum and mean transparency data for each sampling season that the lake/pond has been monitored through the program.

Volunteer monitors use the Secchi-disk, a 20 cm disk with alternating black and white quadrants, to measure water clarity (how far a person can see into the water). Transparency, a measure of water clarity, can be affected by the amount of algae and sediment from erosion, as well as the natural colors of the water. The mean (average) summer transparency for New Hampshire's lakes and ponds is 3.7 meters.

Two different weather related patterns occurred this past spring and summer that influenced lake quality during the summer season.

In late May and early June of 2002, numerous rainstorms occurred. Stormwater runoff associated with these rainstorms may have increased phosphorus loading, and the amount of soil particles washed into waterbodies throughout the state. Some lakes and ponds experienced lower than typical transparency readings during late May and early June.

However, similar to the 2001 sampling season, the lower than average amount of rainfall and the warmer temperatures during the latter-half of the summer resulted in a few lakes/ponds reporting their best-ever Secchi-disk readings in July and August (a time when we often observe reduced clarity due to increased algal growth)!

The current year data (the top graph) show that the in-lake transparency **remained stable** from May to August this season. The transparency in May, June, and July was **slightly less than** the state mean, and in August was **slightly greater than** the state mean.

The historical data (the bottom graph) show that the 2002 mean transparency is *approximately equal to* the state mean.

Overall, the statistical analysis of the historical data (the bottom graph) show that the mean annual in-lake transparency has **not significantly changed** (either increased or decreased) since monitoring began in **1990**. Although the results of the regression test presently show that mean annual transparency has not **significantly** changed over the years, visual inspection of the trend line shows a **slightly declining** (meaning **worsening**) trend. If the mean annual transparency continues to slightly **decrease** each season, the decrease may soon become statistically significant. Therefore, it is important to continue to educate watershed residents on the ways to reduce phosphorus loading into the lake, and to continue to implement best management practices throughout the watershed. (Note: Please refer to Appendix E for the statistical analysis explanation and data print out.)

Typically, high intensity rainfall causes erosion of sediments into lakes/ponds and streams, thus decreasing clarity. Efforts should continually be made to stabilize stream banks, lake/pond shorelines, disturbed soils within the watershed, and especially dirt roads located immediately adjacent to the edge of tributaries and the lake/pond. Guides to Best Management Practices designed to reduce, and possibly even eliminate, nonpoint source pollutants, such as sediment loading, are available from NHDES upon request.

Figure 3 and Table 8: The graphs in Figure 3 (Appendix A) show the amounts of phosphorus in the epilimnion (the upper layer) and the hypolimnion (the lower layer); the inset graphs show current year data. Table 8 (Appendix B) lists the annual maximum, minimum, and median concentration for each deep spot layer and each tributary since the lake/pond has joined the program.

Phosphorus is the limiting nutrient for plant and algae growth in New Hampshire's freshwater lakes and ponds. Too much phosphorus in a lake/pond can lead to increases in plant and algal growth over time. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's lakes and ponds is 11 ug/L. The median summer phosphorus concentration in the hypolimnion (lower layer) is 14 ug/L.

The current year data for the epilimnion (the top inset graph) show that the total phosphorus concentration **remained relatively stable** from May to August. The total phosphorus concentration on the May, June, and July sampling event was **slightly greater than** the state median, while the concentration on the August sampling event was **slightly less than** the state median.

The historical data show that the 2002 mean epiliminetic total phosphorus concentration was **slightly greater than** the state mean.

The current year data for the hypolimnion (the bottom inset graph) show that the total phosphorus concentration *increased slightly from May* to June, and *increased* by a *large amount* from June to August. Please note that the July total phosphorus concentration was *very high* (72 ug/L) as was the turbidity (7.86 NTUs). This suggests that the lake/pond bottom may have been disturbed by the anchor or by the Kemmerer Bottle while sampling. When the lake/pond bottom is disturbed, sediment, which typically contains attached phosphorus, is released into the water column. When collecting the hypolimnion sample, please check to make sure that there is no sediment in the Kemmerer Bottle before filling the sample bottles. Due to the elevated phosphorus concentration and turbidity, the July phosphorus concentration has been removed.

The historical data show that the 2002 mean hypolimnetic total phosphorus concentration was *greater than* the state mean.

Overall, the statistical analysis of the historical data show that the total phosphorus concentration in the epilimnion (upper layer) has **not significantly changed** (either *increased* or *decreased*) since monitoring began in **1990**. Specifically, the total phosphorus concentration in the epilimnion has remained **relatively stable** and has been **approximately equal to** the state median. (Note: Please refer to Appendix E for the statistical analysis explanation and data print out.)

Overall, the statistical analysis of the historical data (the bottom graph) show that the mean annual total phosphorus concentration in the lower layer has **not significantly changed** (either *increased* or *decreased*) since monitoring began in **1990**. Although the results of the regression test presently show that mean annual phosphorus concentration in the hypolimnion has not **significantly** changed over the years, visual inspection of the trend line shows a **slightly declining** (meaning **improving**) trend. If the mean annual phosphorus concentration in the hypolimnion continues to slightly decrease each season, the decrease may soon become statistically significant. We hope this trend continues! (Note: Please refer to

Appendix E for the statistical analysis explanation and data print out.)

One of the most important approaches to reducing phosphorus loading to a waterbody is to continually educate watershed residents about its sources and how excessive amounts can adversely impact the ecology and value of lakes and ponds. Phosphorus sources within a lake or pond's watershed typically include septic systems, animal waste, lawn fertilizer, road and construction erosion, and natural wetlands. If you would like to educate watershed residents about how they can help to reduce phosphorus loading into the lake/pond, please contact the VLAP Coordinator.

#### TABLE INTERPRETATION

#### > Table 2: Phytoplankton

Table 2 lists the current and historic phytoplankton species observed in the lake/pond. The dominant phytoplankton species observed this year were Oscillatoria (a filamentous cyanobacteria), Dinobryon (a golden-brown algae), and Synura (a golden-brown algae).

Phytoplankton populations undergo a natural succession during the growing season (Please refer to page 12 of the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding seasonal plankton succession). Diatoms and golden-brown algae are typical in New Hampshire's less productive lakes and ponds. An overabundance of cyanobacteria (previously referred to as bluegreen algae) indicates that there may be an excessive total phosphorus concentration in the lake/pond, or that the ecology is out of balance.

#### > Table 2: Cyanobacteria (Blue-green algae)

Oscillatoria, a cyanobacterium, was the dominant species observed in the plankton sample this season. In addition, small amounts of the cyanobacterium Microcystis and Anabaena was observed in the plankton sample this season. These species can be toxic to livestock, wildlife, pets, and humans if a large "surface bloom" occurs. Cyanobacteria can reach nuisance levels when excessive nutrients and favorable environmental conditions occur. As with the summer of 2001, we observed that some lakes and ponds had cyanobacteria present during the 2002 summer season, likely due to the many warm and sunny days that occurred this summer, which may have accelerated algal and bacterial growth. In addition, the lower than normal amount of rainfall during the latter half of the summer, meant that the slow flushing rates resulted in less phosphorus exiting the lake outlet and more phosphorus being available for plankton growth.

The presence of cyanobacteria serves as a reminder of the lake's/pond's delicate balance. Watershed residents should continue to act proactively to reduce nutrient loading into the lake/pond by eliminating fertilizer use on lawns, keeping the lake/pond shoreline natural, re-vegetating cleared areas within the watershed, and properly maintaining septic systems and roads.

In addition, residents should also observe the lake/pond in September and October during the time of fall turnover (lake mixing) to document any algal blooms that may occur. Cyanobacteria (bluegreen algae) have the ability to regulate their depth in the water column by producing or releasing gas from vesicles. However, occasionally lake mixing can affect their buoyancy and cause them to rise to the surface and bloom. Wind and currents tend to "pile" cyanobacteria into scums that accumulate in one section of the lake/pond. If a fall bloom occurs, please contact the VLAP Coordinator.

#### > Table 4: pH

Table 4 (Appendix B) presents the in-lake and tributary current year and historical pH data.

pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 5.5 severely limits the growth and reproduction of fish. A pH between 6.5 and 7.0 is ideal for fish. The mean pH value for the epilimnion (upper layer) in New Hampshire's lakes and ponds is 6.5, which indicates that the surface waters in state are slightly acidic. For a more detailed explanation regarding pH, please refer to page 16 of the "Chemical Monitoring Parameters" section of this report.

The mean pH in the **epilimnion** this season was **6.99**, which is ideal for fish survival.

Due to the presence of granite bedrock in the state and the deposition of acid rain, there is not much that can be done to effectively increase lake/pond pH.

#### > Table 5: Acid Neutralizing Capacity

Table 5 in Appendix B presents the current year and historic epilimnetic ANC for each year the lake/pond has been monitored through VLAP.

Buffering capacity or ANC describes the ability of a solution to resist changes in pH by neutralizing the acidic input to the lake. For a more detailed explanation, please refer to page 16 of the "Chemical Monitoring Parameters" section of this report.

The Acid Neutralizing Capacity (ANC) of the **epilimnion** (the upper layer) continues to remain **high** (18.43 mg/L as CaCO<sub>3</sub>) and is **much greater than** the state mean of 6.7 mg/L (Table 5). Specifically, this means that the lake/pond has a "low vulnerability" to acidic inputs (such as acid precipitation).

#### > Table 6: Conductivity

Table 6 in Appendix B presents the current and historic conductivity values for tributaries and in-lake data. Conductivity is the numerical expression of the ability of water to carry an electric current. For a more detailed explanation, please refer to page 16 of the "Chemical Monitoring Parameters" section of this report.

The conductivity has *increased* in the lake/pond and inlets since monitoring began (Table 6). Typically, sources of increased conductivity are due to human activity. These activities include septic systems that fail and leak leachate into the groundwater (and eventually into the tributaries and the lake/pond), agricultural runoff, and road runoff (which contains road salt during the spring snow melt). New development in the watershed can alter runoff patterns and expose new soil and bedrock areas, which could contribute to increasing conductivity. In addition, natural sources, such as iron deposits in bedrock, can influence conductivity. It is possible that the lower than normal amount rainfall during the latter-half of the summer reduced tributary and lake flushing, which allowed pollutants and ions to build up and resulted in elevated conductivity levels.

We recommend that your monitoring group conduct stormwater sampling along **each inlet** so that we can determine what may be causing the increases. For a detailed explanation on how to conduct stormwater sampling, please refer to this year's "Special Topic Article" which is included in Appendix D of this report.

#### > Table 8: Total Phosphorus

Table 8 in Appendix B presents the current year and historic total phosphorus data for in-lake and tributary stations. Phosphorus is the nutrient that limits the algae's ability to grow and reproduce. Please refer to page 17 of the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The total phosphorus concentration *increased* in the **Cat-O-Brook Inlet, the Jenny-Dickey Brook,** and **Manter Brook** this season. These stations have had a history of *elevated* and *fluctuating* total

phosphorus concentrations.

Again, we recommend that your monitoring group conduct stormwater sampling along these inlets so that we can determine what may be causing the increases.

#### > Table 9: Dissolved Oxygen and Temperature

Table 9 in Appendix B shows the dissolved oxygen/temperature profile(s) for the 2002 sampling season. The presence of dissolved oxygen is vital to fish and amphibians in the water column and also to bottom-dwelling organisms. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The dissolved oxygen concentration was **high** in the epilimnion, but was low in the metalimnion (middle layer) and in the hypolimnion (lower layer). This is a sign of the lake's/pond's aging and declining health. Please refer to the Table 10 discussion for a more detailed explanation.

#### > Table 10: Historical Hypolimnetic Dissolved Oxygen

Table 10 in Appendix B shows the historical and current year dissolved oxygen concentration in the hypolimnion (lower layer).

The dissolved oxygen concentration was **low** at the deep spot of the lake/pond (Table 9). As stratified lakes/ponds age, oxygen becomes **depleted** in the hypolimnion (the lower layer) by the process of decomposition. Specifically, the loss of oxygen in the hypolimnion results primarily from the process of biological breakdown of organic matter (i.e.; biological organisms use oxygen to break down organic matter), both in the water column and particularly at the bottom of the lake/pond where the water meets the sediment. When oxygen levels are depleted to less than 1 mg/L in the hypolimnion (as it was this season and in many past seasons), the phosphorus that is normally bound up in the sediment may be re-released into the water column.

In addition, during this season, and many past sampling seasons the lake/pond has had a lower dissolved oxygen concentration and a higher total phosphorus concentration in the hypolimnion (the lower layer) than in the epilimnion (the upper layer). These data suggest that the process of *internal total phosphorus loading* (commonly referred to as *internal loading*) is occurring in the lake/pond. When oxygen levels are depleted to less than 1 mg/L in the hypolimnion (as it was this season and in many past seasons), the phosphorus that is normally bound up with metals in the sediment may be re-released into the water column. Depleted oxygen

concentration in the hypolimnion of thermally stratified lakes/ponds typically occurs as the summer progresses.

The **low** oxygen level in the hypolimnion is a sign of the lake's/pond's **aging** and **declining** health. This year the DES biologist conducted the temperature/dissolved oxygen profile in **August**. We recommend that the annual biologist visit for the 2003 sampling season be scheduled during **June** so that we can determine if the hypolimnetic oxygen is being depleted early in the sampling season.

#### > Table 11: Turbidity

Table 11 in Appendix B lists the current year and historic data for inlake and tributary turbidity. Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to page 19 of the "Other Monitoring Parameters" section of this report for a more detailed explanation.

As discussed previously, the turbidity of the hypolimnion (lower layer) sample was elevated on the **July** sampling event. This suggests that the lake/pond bottom may have been disturbed by the anchor or by the Kemmerer Bottle while sampling. When the lake/pond bottom is disturbed, sediment, which typically contains attached phosphorus, is released into the water column. When collecting the hypolimnion sample, please check to make sure that there is no sediment in the Kemmerer Bottle before filling the sample bottles.

The mean annual turbidity level for each inlet to the lake (Cat-O-Brook Inlet, Jenny-Dickey Brook, and Manter Brook) was elevated this season. This suggests that increased land disturbance and consequent soil erosion is occurring within the watershed. When land is cleared of vegetation and unstable soils erode, sediment, which typically contains attached phosphorus, is released into the water column. This typically causes the turbidity and phosphorus concentration to increases in the inlets and eventually in the lake.

As recommended previously, we recommend that your monitoring group conduct stormwater sampling along these inlets so that we can determine what may be causing the increases.

#### > Table 12: Bacteria (E.coli)

Table 12 lists the current year data for bacteria (E.coli) testing. E. coli is a normal bacterium found in the large intestines in humans and other warm-blooded animals. E.coli is used as an indicator organism because it is easily cultured, and its presence in the water, in defined amounts, indicates that sewage **MAY** be present. If sewage is present in the water, potentially harmful pathogens may also be present.

Please consult page 20 of the "Other Monitoring Parameters section of the report for the current standards for *E. coli* in surface waters. If residents are concerned about sources of *E.coli* such as septic system impacts, animal waste, or waterfowl waste, it is best to conduct *E. coli* testing when the water table is high or after rain events.

The bacteria concentration at the "Blue House" this season was **0 counts/100 mL** of sample. We hope this trend continues!

#### **DATA QUALITY ASSURANCE AND CONTROL**

#### **Annual Assessment Audit:**

During the annual visit to your lake/pond, the biologist conducted a "Sampling Procedures Assessment Audit" for your monitoring group. Specifically, the biologist observed the performance of your monitoring group while sampling and filled out an assessment audit sheet to document the ability of the volunteer monitors to follow the proper field sampling procedures (as outlined in the VLAP Monitor's Field Manual). This assessment is used to identify any aspects of sample collection in which volunteer monitors are not following the proper procedures, and also provides an opportunity for the biologist to retrain the volunteer monitors as necessary. This will ultimately ensure that the samples that the volunteer monitors collect are truly representative of actual lake and tributary conditions.

Overall, your monitoring group did an **excellent** job collecting samples on the annual biologist visit this season! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the biologist to provide additional training.

#### Sample Receipt Checklist:

Each time your monitoring group dropped off samples at the laboratory this summer, the laboratory staff completed a sample receipt checklist to assess and document if the volunteer monitors followed proper sampling techniques when collecting the samples. The purpose of the sample receipt checklist is to minimize, and hopefully eliminate, future reoccurrences of improper sampling techniques.

Overall, the sample receipt checklist showed that your monitoring group did an *excellent* job when collecting samples and submitting them to the laboratory this season! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the laboratory staff to contact your group with questions, and no samples were rejected for analysis.

#### **NOTES**

- ➤ Monitor's Note (5/22/02): All tributaries running rapidly.
- Monitor's Note (6/24/02): Rain nearly every day for the past week. Heavy shower last night approximately 18 hours before sampling. Tributary flow very heavy.
- Monitor's Note (7/24/02): Sampled the morning after heavy rains. Tributaries had very slow flow. Jenny Dickey Brook and Cat-O-Brook had no noticeable flow, but were not dry.
- ➤ Monitor's Note (8/28/02): Jenny Dickey Brook dry.

#### **USEFUL RESOURCES**

Changes to the Comprehensive Shoreland Protection Act: 2001 Legislative Session, NHDES Fact Sheet, (603) 271-3505, or <a href="https://www.des.state.nh.us/factsheets/sp/sp-8.htm">www.des.state.nh.us/factsheets/sp/sp-8.htm</a>

Cyanobacteria in New Hampshire Waters Potential Dangers of Blue-Green Algae Blooms, NHDES Fact Sheet, (603) 271-3505, or www.des.state.nh.us/factsheets/wmb/wmb-10.htm

The Lake Pocket Book. Prepared by The Terrene Institute, 2000. (internet: www.terrene.org, phone 800-726-4853)

Managing Lakes and Reservoirs, Third Edition, 2001. Prepared by the North American Lake Management Society (NALMS) and the Terrene Institute in cooperation with the U.S. Environmental Protection Agency. Copies are available from NALMS (internet: <a href="www.nalms.org">www.nalms.org</a>, phone 608-233-2836), and the Terrene Institute (internet: <a href="www.terrene.org">www.terrene.org</a>, phone 800-726-4853)

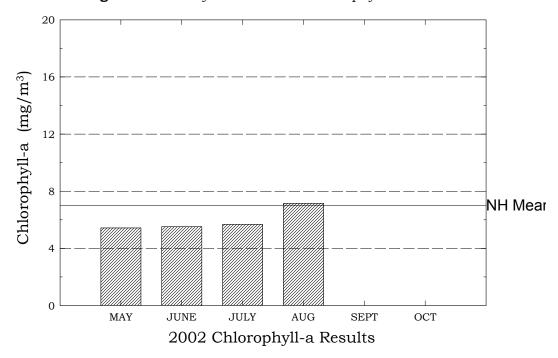
Organizing Lake Users: A Practical Guide. Written by Gretchen Flock, Judith Taggart, and Harvey Olem. Copies are available form the Terrene Institute (internet: www.terrene.org, phone 800-726-4853)

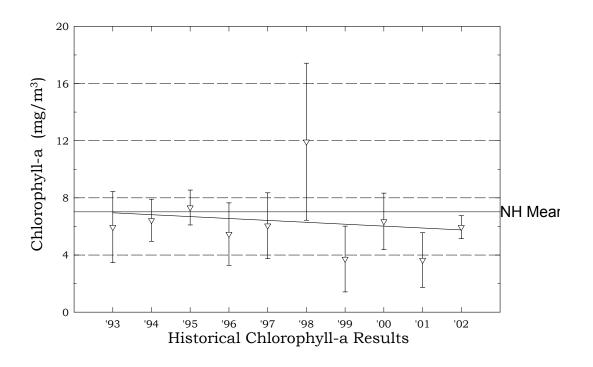
Proper Lawn Care in the Protected Shoreland: The Comprehensive Shoreland Protection Act, WD-SP-2, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/sp/sp-2.htm

Sand Dumping - Beach Construction, WD-BB-15, NHDES Fact Sheet, (603) 271-3503 or <a href="https://www.des.state.nh.us/factsheets/bb/bb-15.htm">www.des.state.nh.us/factsheets/bb/bb-15.htm</a>

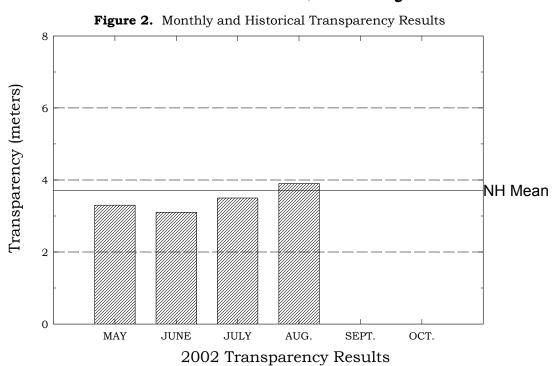
Swimmers Itch, WD-BB-2, NHDES Fact Sheet, (603) 271-3503 or <a href="https://www.des.state.nh.us/factsheets/bb/bb-2.htm">www.des.state.nh.us/factsheets/bb/bb-2.htm</a>

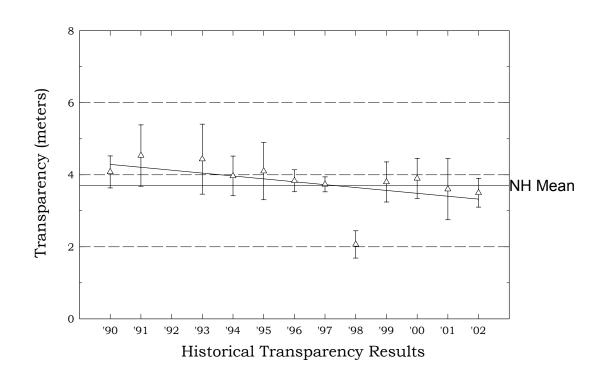
Use of Lakes or Streams for Domestic Water Supply, WD-WSEB-1-11, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/ws/ws-1-11.htm


Water Milfoil, WD-BB-1, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/bb/bb-1.htm


Weed Watchers: An Association to Halt the Spread of Exotic Aquatic Plants, WD-BB-4, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/bb/bb-4.htm

# Appendix A: Graphs


### Beaver Lake, Derry


Figure 1. Monthly and Historical Chlorophyll-a Results





### Beaver Lake, Derry





#### Beaver Lake, Derry Figure 3. Monthly and Historical Total Phosphorus Data. 60 2002 Monthly Results 50 50 40 30 20 Median 10 40 Total Phosphorus Concentration (ug/L) 30 20 ¥ Median 10 0 '93 '94 '95 '96 '97 '98 '99 '90 '91 '00 '01 '02 Epilimnion (Upper Water Layer) 60 2002 Monthly Results 50 50 40 30 20 Median 10 40 May June July Aug Sept Oct 30 20 $\nabla$ Median 10 0 '90 '91 '92 '94 '95 '96 '97 '98 Hypolimnion (Lower Water Layer)